

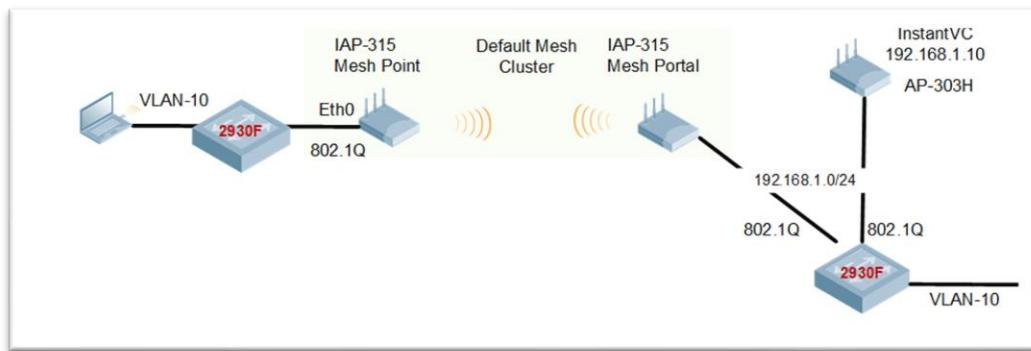
1 Table of Contents

Table of Contents

1	Table of Contents	1
1.1	Revision History	1
2	Instant Mesh	2
2.1	Things you need	2
3	Instant AP Configuration	3
3.1	Normal Mesh Operation	4
3.2	Disconnecting the Wired Port	6
3.3	Automatic Mesh Portal Selection	9
3.4	Reconnecting the Wired Port	11
3.5	Ethernet Bridging	12
4	Instant Mesh Cluster	16
4.1	Instant Cluster Manual Configuration	17
4.2	Instant Cluster Configuration with Standalone mode	18

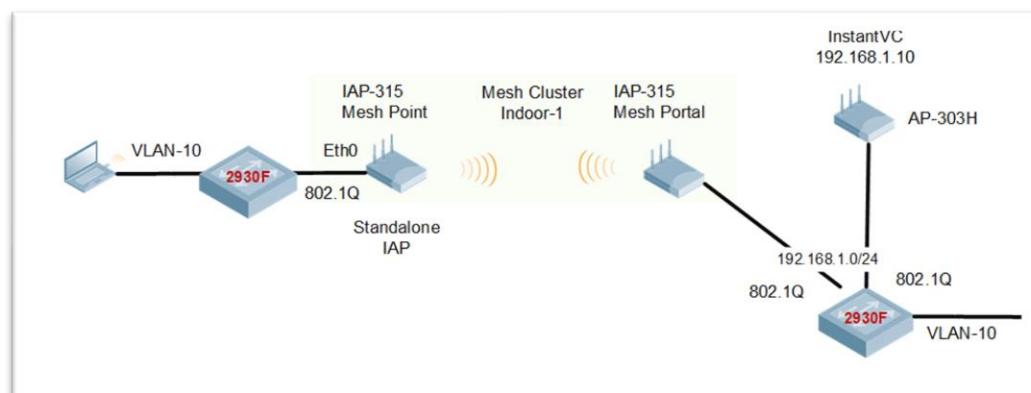
1.1 Revision History

DATE	VERSION	EDITOR	CHANGES
16 May 2019	0.1	Ariya Parsamanesh	Initial creation
24 May 2019	0.2	Ariya Parsamanesh	Standalone mesh


2 Instant Mesh

Aruba Instant APs (IAP) provide an effective way to extend WiFi coverage using wireless mesh for outdoor/ indoor environments. Instant Mesh network must have at least one valid uplink to provide mesh functionality. This uplink can either be wired or 3G/4G connection. As soon as an IAP has a valid uplink, it functions as a Mesh Portal, and IAP without an Ethernet link functions as a Mesh Point. Now if we have 2x IAPs with valid uplink connections this makes them both Mesh Portal. There is redundancy in the mesh network, and most mesh points try to mesh directly with one of the two portals. The selection is based on the actual deployment and RF environment. But generally, this happens automatically.

With enhancement in Instant 8.3 and 8.4 versions, we can have much better control over the mesh cluster operation and selection. Here are the new enhancements.


1. Role Assignment enhancement for Mesh point. IAP will check if the Eth0 is up and operational as it sends loop detection packets. If the Eth0 is up and operational then only, will the mesh point reboots and becomes a mesh portal.
2. We can now have more than one mesh cluster for IAP swarm and manually configure mesh clusters and assign it to specific IAPs
3. IAPs in Standalone Mode can now connect to a mesh cluster.

Here is the lab set-up to demonstrate these feature, we are showing three scenarios. The first one shows the configuration steps involved in setting mesh link with the default mesh cluster and enabling EO bridging.

The second one is showing the configuration steps involved in setting manual mesh cluster for a specific Mesh porta/point with EO bridging.

The third one is showing the configuration steps involved in setting manual mesh cluster for a specific Mesh porta/point with EO bridging for a standalone IAP.

2.1 Things you need

- Aruba Instant version 8.4.0.0 or later
- 3x IAPs in an existing Instant Cluster
- A Layer three switch and some WiFi and wired clients

3 Instant AP Configuration

With IAPs, if they part of an Instant cluster, they automatically can connect to the nearest IAP to create a wireless mesh link using their 5GHz radio as a backhaul link. The mesh operation is only supported on the IAPs with dual radios. Generally, an IAP with an active Ethernet link is a Mesh Portal and acts like a gateway between wireless mesh and the main wired LAN.

The IAP that connects to Mesh portal using its WiFi radio is called Mesh Point. Then the mesh point provides wireless services to its clients like any other IAP.

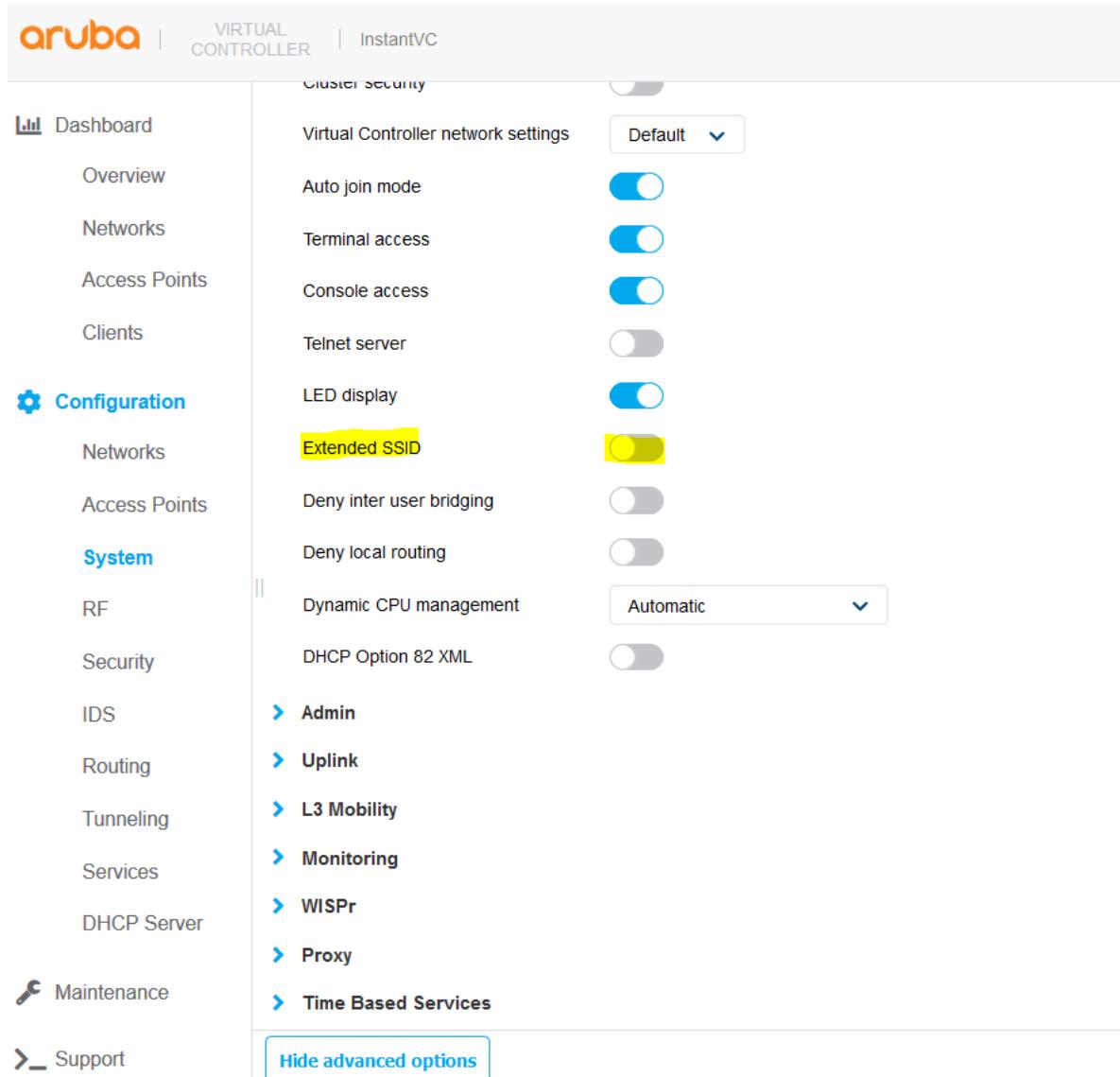
In an Instant mesh network, the maximum

- Hop count is 2,
- Number of mesh points per mesh portal is 8.

On dual-radio Instant APs, the 2.4 GHz radio is always used for client traffic, while the 5 GHz radio is always used for both mesh-backhaul and client traffic. If you anticipate large number of 5G clients on the same radio that is used for mesh backhaul, it is advisable to separate it out so that the 5G radio is dedicated to the mesh backhaul. You can separate it out using zones and manual mesh cluster configuration shown later in this guide.

Here we have 3x IAPs in a cluster as shown below. IAP-303H is the master while the two IAP-315 are the slaves. At this stage both are connected to the LAN.

Access Points (3)														
Overview	Name	IP Address	Mode	Clients	Type	Channel	Power (dBm)	Utilization (%)	Noise (dBm)	Radio 0	Channel	Power (dBm)	Utilization (%)	Noise (dBm)
	Networks	Access Points	Clients							Radio 1				
	BLDG-A-ATV1 ★	192.168.1.121	access	5	303H(indoor)	36E	23	0	-92	6	9	6	-96	
	c8:b5:ad:cb:ca:e2	192.168.1.126	access	0	315(indoor)	149E	27	1	-92	1	9	8	-96	
	c8:b5:ad:cb:4e	192.168.1.123	access	0	315(indoor)	149E	27	1	-92	11	9	6	-96	


Now we check the state of the Instant Cluster and notice that extended-ssid is configured.

```
BLDG-A-ATV1# sh swarm mode
Swarm Mode      :Cluster
BLDG-A-ATV1# sh swarm state
AP Swarm State      :swarm_config_sync_complete
mesh auto eth0 bridging  :no
Config in flash      :yes
factory SSID in flash :no
extended-ssid configured :yes
extended-ssid active   :yes
advanced-zone configured :no
Factory default status :no
Source of system time  :NTP server
Config load cnt      :1
VC Channel index     :1
IDS Client Gateway Detect :yes
Config Init success cnt for heartbeat :0
Config Init success cnt for register  :0
Config Init skipping cnt for heartbeat :0
Config Init skipping cnt for register  :0
Config Init last success reason   :N/A
Config Init last success time    :N/A
BLDG-A-ATV1#
```

Next we'll check the mesh link status and see that it is not supported in the current mode.

```
BLDG-A-ATV1# sh ap mesh link
No mesh supported in current mode
BLDG-A-ATV1#
```

This is because we have extended SSID enabled and will not disable it.

aruba | VIRTUAL CONTROLLER | InstantVC

Dashboard | Overview | Networks | Access Points | Clients | Configuration | Networks | Access Points | System | RF | Security | IDS | Routing | Tunneling | Services | DHCP Server | Maintenance | Support

Cluster Security

Virtual Controller network settings: Default

Auto join mode:

Terminal access:

Console access:

Telnet server:

LED display:

Extended SSID:

Deny inter user bridging:

Deny local routing:

Dynamic CPU management: Automatic

DHCP Option 82 XML:

RF

- Admin
- Uplink
- L3 Mobility
- Monitoring
- WISPr
- Proxy
- Time Based Services

Support

Hide advanced options

When you make this change you need to reboot the APs for this to take effect.

3.1 Normal Mesh Operation

Once the IAPs are rebooted now they are ready to support mesh functionality. Now when we issue the commands, we see that Extended SSID is disabled and the other previous message "No mesh supported in current mode" is no longer displayed.

```
BLDG-A-ATV1# sh swarm state

AP Swarm State          :swarm_config_sync_complete
mesh auto eth0 bridging :no
Config in flash        :yes
factory SSID in flash :no
extended-ssid configured :no
extended-ssid active    :no
```

```
advanced-zone configured :no
Factory default status :no
Source of system time :NTP server
Config load cnt :2
VC Channel index :2
IDS Client Gateway Detect :yes
Config Init success cnt for heartbeat :1
Config Init success cnt for register :0
Config Init skipping cnt for heartbeat :0
Config Init skipping cnt for register :0
Config Init last success reason :heartbeat
Config Init last success time :2019-05-19 12:13:49
BLDG-A-ATV1#
```

```
BLDG-A-ATV1# sh ap mesh link
```

Neighbor list

There are other mesh commands as well, like mesh cluster topology. These commands are run on the Virtual controller (VC).

```
BLDG-A-ATV1# sh ap mesh cluster topology
```

Mesh Cluster name: Default mesh group

Name	AP	Type	Mesh	Role	Parent	IP Address	Path Cost	Node Cost
Link	Cost	Hop Count	Rate	Tx/Rx	RSSI	Last Update	Uplink Age	Children
BLDG-A-ATV1	AP-303H	Portal (AC)	-	192.168.1.121	0	0	0	0
0	-	0	4m:52s	12h:2m:1s	0			
c8:b5:ad:cb:ca:e2	AP-315	Portal (AC)	-	192.168.1.126	0	0	0	0
0	-	0	4m:38s	53m:16s	0			
c8:b5:ad:cb:cb:4e	AP-315	Portal (AC)	-	192.168.1.123	0	0	0	0
0	-	0	4m:21s	47m:57s	0			

Total APs: 3

(N): 11N Enabled. (AC): 11AC Enabled. (AD): 11AD Enabled. For Portals 'Uplink Age' equals uptime.

BLDG-A-ATV1#

Note that the three mesh roles are mesh Portals.

```
BLDG-A-ATV1# sh ap mesh cluster status

Mesh cluster      :Disabled
Mesh role        :Mesh Portal
BLDG-A-ATV1#
```

3.2 Disconnecting the Wired Port

Now we will disconnect the Ethernet cable from IAP-315 (c8:b5:ad:cb:ca:e2). Briefly the WiFi LED goes blank and then back to green. And after around 5 minutes the IAP-315 reboots and come up as Mesh point. Here are the main console messages.

```
Enter non-FIPS mode
Cfg len is 13730
Starting watchdog process...
Aruba watchdog daemon started [2 thread(s)]
Loading configuration file of length 13730...
wifi uplink detected...
Terminal access enabled...
Valid SSID detected...

Ethernet uplink not active yet

No uplink active. Becoming Mesh Point
copying bootuplog ...
[ 110.590128] uol: module license 'Proprietary' taints kernel.
[ 110.672383] Disabling lock debugging due to kernel taint
[ 110.736894] UOL ctf init done
[ 110.771352] uol_hw_offload_enable:609 enable=1
[ 110.824492] uol_hw_offload_enable:621 Abort to enable offload, reason=mesh point
[ 110.913027] UOL nss init done
[ 110.948453] init_uol_mod: offload cap: 0x140, mesh mode point, strapless_enabled 0,
uplink_vlan 0
[ 111.080099] AP xml model 95, num_radios 2 (jiffies 55537)
[ 111.132239] apType 95 hw_opmode 0
[ 111.171915] radio 0: band 1 ant 0 max_ssid 16
[ 111.223867] radio 1: band 0 ant 0 max_ssid 16
[ 111.276038] init_asap_mod: installation:0
[ 111.323898] election init: rand=13 HZ=500
[ 111.372008] IAP client match init
[ 111.718244] anul_radio_bond_sysctl_init
allow PAPI
set device anulo mtu to 2000
Starting DHCP
Compressing all files in the /etc/httpd directory...
Done.

<<<<      Welcome to the Access Point      >>>>

Power supply mode is POE-AF:, USB Modem is not present.
Completed SW FIPS KAT test

[ 159.849547] enet0 bridging is enabled
```

```

[ 173.651233] bond0 acl set to 100 0
[ 176.083380] VAP device aruba000 created osifp: (d6a1a540) os_if: (d5e78000)
[ 176.159668] wmi_unified_set_psmode:set psmode=1
[ 176.208747] wmi_unified_set_psmode:set psmode=0
[ 176.265823] VAP device aruba001 created osifp: (d6a1c540) os_if: (d5e90000)
[ 200.140487] ieee80211_connection_state_connecting_entry:668, enter.....,sm->candidate_aplist_index = 0
[ 200.240612] wlan_assoc_sm_start:890, enter.....
[ 200.295751] ieee80211_assoc_state_init_event:142, enter....., event 0
[ 200.376476] probereq timeout happen in state machine but we donot care it event = 4,186,ieee80211_assoc_state_join_event
[ 200.504123] ieee80211_assoc_state_join_event:197, goto AUTH
[ 200.570759] wlan_mlme_auth_request:344, enter >>>>>>>
[ 200.640456] ieee80211_assoc_state_assoc_event:333, ASSOC sucess and transition to RUN state
[ 202.012183] Picked up default IP a9fe7162, rand 7162
[ 202.059231] (23:34:52) !!! Init ---> Slave
[ 202.108059] wait for stm to initialize over
[ 202.158075] asap_send_elected_master: sent successfully
[ 202.736488] Mesh point ap ip is ready: 2114037952
[ 203.738487] ip_time_handler: Got ip and packets on bond0 Started master election 1-0, rand 33
[ 252.139768] bond0 acl set to 100 0
[ 254.008528] VAP device aruba002 created osifp: (ddbe6540) os_if: (daae8000)
[ 254.980849] VAP device aruba102 created osifp: (d7e7c540) os_if: (d50c8000)
[ 255.775507] asap_send_elected_master: sent successfully
ble_ready is present @115 .... start processing msgs from APB

```

Checking the system logs on IAP-315 we see the mesh cluster ID is generated and sent.

```

c8:b5:ad:cb:ca:e2# sh log sys 10

May 20 10:36:06 cli[5728]: <341004> <WARN> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 cli| cli_dpimgr_stop: pid= 7049
May 20 10:36:06 cli[5728]: <341004> <WARN> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 cli| cli_dpimgr_stop: dpimgr pid= 7049 is reset now
May 20 10:36:06 cli[5728]: <341004> <WARN> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 cli| cli_dpimgr_launch: called with cmd dpimgr returns pid status 8868
May 20 10:36:06 cli[5728]: <341004> <WARN> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 cli| CLI to PAPI port 8516 communication code 1
May 20 10:36:06 syslog: <393003> <WARN> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 dpimgr| dpimgr_brightcloud_init 312 BCA init done
May 20 10:36:07 cli[5728]: <341004> <WARN> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 cli| Do CLI wlan factory
May 20 10:36:09 cli[5728]: <341004> <WARN> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 cli| is_factory_reset_on_running : factory default status changed reason : ssid_config
May 20 10:36:10 cli[5728]: <341131> <WARN> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 cli| AP sends meshd parameters 3538224001885c18df9b4527802f2a183829d2bea0df98b430-3538224001885c18d-31-0.
May 20 10:36:17 nanny[5642]: <303073> <ERRS> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 nanny| Process /aruba/bin/radiusd-term [pid 9051] died: got signal SIGTERM
May 20 10:36:17 nanny[5642]: <303079> <ERRS> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 nanny| Restarted process /aruba/bin/radiusd-term, new pid 9516
c8:b5:ad:cb:ca:e2#

```

Now when we login to IAP-315 which is a slave to the VC (IAP-303H), the mesh link is up.

```
c8:b5:ad:cb:ca:e2# sh ap mesh link
```

Neighbor list

MAC	Portal	Channel	Age	Hops	Cost	Relation	Flags	RSSI
Rate Tx/Rx	A-Req	A-Resp	A-Fail	HT-Details		Cluster ID		
24:f2:7f:d5:fa:d0	Yes	36E	0	0	5.00	P 3m:17s	VLK	38
702/866	1	1	0	VHT-80MHzsgi-2ss	b4afc01b0ce08dcc578432086842f21			

Total count: 1, Children: 0

Relation: P = Parent; C = Child; N = Neighbor; B = Blacklisted-neighbor

Flags: R = Recovery-mode; S = Sub-threshold link; D = Reselection backoff; F = Auth-failure; H = High Throughput; V = Very High Throughput, L = Legacy allowed

K = Connected; U = Upgrading; G = Descendant-upgrading; Z = Config pending; Y = Assoc-resp/Auth pending

a = SAE Accepted; b = SAE Blacklisted-neighbour; e = SAE Enabled; u = portal-unreachable; o = opensystem

```
c8:b5:ad:cb:ca:e2#
```

Note the RSSI value which in this case is 38 and also the A-Req/A-Resp/A-Fail columns which provide the number of association requests from clients; number of association responses from the mesh node and number of association failures. The IP address of the IAP-315 is from the DHCP server over the wireless backhaul.

```
c8:b5:ad:cb:ca:e2# sh ip int b
Interface                      IP Address / IP Netmask      Admin  Protocol
br0                           192.168.1.126 / 255.255.255.0  up    up
br0.3333                      172.31.98.1 / 255.255.254.0  up    up
c8:b5:ad:cb:ca:e2#
```

Now we'll check the VC which is one of the Mesh Portals. We can see that the mesh link from the IAP-315-ca:e2 is establish with the VC.

```
BLDG-A-ATV1# sh ap mesh link
```

Neighbor list

MAC	Portal	Channel	Age	Hops	Cost	Relation	Flags	RSSI	Rate Tx/Rx	A-Req	A-Resp	A-Fail	HT-Details	Cluster ID
c8:b5:ad:3c:ae:31	24:f2:7f:d5:fa:d0	36E	0	1	5.00	C 5m:15s	VLK	39	866/585	1	1	0	VHT-80MHzsgi-4ss	b4afc01b0ce08dcc578432086842f21

Total count: 1, Children: 1

Relation: P = Parent; C = Child; N = Neighbor; B = Blacklisted-neighbor

Flags: R = Recovery-mode; S = Sub-threshold link; D = Reselection backoff; F = Auth-failure; H = High Throughput; V = Very High Throughput, L = Legacy allowed

K = Connected; U = Upgrading; G = Descendant-upgrading; Z = Config pending; Y = Assoc-resp/Auth pending

a = SAE Accepted; b = SAE Blacklisted-neighbour; e = SAE Enabled; u = portal-unreachable; o = opensystem

```
BLDG-A-ATV1#
```

The Mesh cluster topology looks like this.

```
BLDG-A-ATV1# sh ap mesh cluster topology
```

Mesh Cluster name: Default mesh group

Name	Link Cost	AP Type	Mesh Role	Parent	IP Address	Path Cost	Node Cost
Hop Count	---	Rate Tx/Rx	RSSI	Last Update	Uplink Age	Children	---
BLDG-A-ATV1	0	AP-303H	Portal (AC)	-	192.168.1.121	0	1
c8:b5:ad:cb:ca:e2	4	AP-315	Point (AC)	BLDG-A-ATV1	12h:21m:30s	1	0
	1		526/866	49	5m:2s	0	
c8:b5:ad:cb:cb:4e	0	AP-315	Portal (AC)	-	192.168.1.123	0	0
	0		-	0	3m:41s	0	

Total APs: 3

(N): 11N Enabled. (AC): 11AC Enabled. (AD): 11AD Enabled. For Portals 'Uplink Age' equals uptime.

```
BLDG-A-ATV1#
```

3.3 Automatic Mesh Portal Selection

Instant mesh also provide automatic Mesh portal selection. In our setup since we have 2x mesh portals, the system automatically selects the better mesh portal.

Here we see that IAP-315-ca:e2 which is our mesh point changes the mesh portal to the other IAP-315.

```
c8:b5:ad:cb:ca:e2# sh ap mesh link
```

Neighbor list

MAC	Rate Tx/Rx	A-Req	Portal	Channel	Age	Hops	Cost	Relation	Flags	RSSI
			A-Resp	A-Fail	HT-Details			Cluster ID		
c8:b5:ad:3c:b4:f0			Yes	149E	0	0	3.00	P 9m:57s	VLK	59
1300/1560	2	2	1	1				VHT-80MHzsgi-4ss	b4afc01b0ce08dcc578432086842f21	

Total count: 1, Children: 0

Relation: P = Parent; C = Child; N = Neighbor; B = Blacklisted-neighbor

Flags: R = Recovery-mode; S = Sub-threshold link; D = Reselection backoff; F = Auth-failure; H = High Throughput; V = Very High Throughput, L = Legacy allowed

K = Connected; U = Upgrading; G = Descendant-upgrading; Z = Config pending; Y = Assoc-resp/Auth pending

a = SAE Accepted; b = SAE Blacklisted-neighbour; e = SAE Enabled; u = portal-unreachable; o = opensystem

```
c8:b5:ad:cb:ca:e2#
```

Checking the mesh counters on the mesh point shows the change record and also the previous mesh portal.

```
c8:b5:ad:cb:ca:e2# sh ap mesh counters
```

Mesh Packet Counters

Interface	Echo Sent	Echo Rcv	Probe Req	Probe Resp	Assoc Req	Assoc Resp	Assoc Fail
Link up/down	Resel.	Switch	Other Mgmt				
Parent	0	0	0	0	0	0	0
1	-	-	0				
Child	1383	1407	27	3 (3 HT)	3 (3 HT)	2 (2 HT)	1
0	0	1	17426				

Received Packet Statistics: Total 20223, Mgmt 17440 (dropped non-mesh 0), Data 2774 (dropped unassociated 0) HT: pns=0 ans=0 pnr=3 ars=3 arr=0 anr=2

Recovery Profile Usage Counters

Item	Value
Enter recovery mode	0
Exit recovery mode	0
Total connections to switch	0

Mesh loop-prevention Sequence No.:4917

Mesh timer ticks:1462

Change-record: improved metric, linkdown:17m:40s, linkup:17m:7s, previous portal:24:f2:7f:d5:fa:d0, previous parent: 24:f2:7f:d5:fa:d0
Scan-summary:36:0 40:s 44:0 48:s 52:s 56:s 60:s 64:s 100:s 104:s 108:s 112:s 116:s 132:s 136:s 140:s 149:0 153:s 157:s 161:s 165:s
scan-key: n:not-set,i:invalid,b:blacklisted,s:set,<number>:probe-resp-cnt.
c8:b5:ad:cb:ca:e2#

Now on the VC we can confirm that the Mesh portal is now the other IAP-315

BLDG-A-ATV1# sh ap mesh cluster topology

Mesh Cluster name: Default mesh group

Name	AP Type	Mesh Role	Parent	IP Address	Path Cost			
Node	Cost	Link Cost	Hop Count	Rate Tx/Rx	RSSI	Last Update	Uplink Age	Children
BLDG-A-ATV1		AP-303H	Portal (AC)	-		192.168.1.121	0	0
0	0	-	0	1m:24s		12h:43m:22s	0	
c8:b5:ad:cb:ca:e2		AP-315	Point (AC)	c8:b5:ad:cb:cb:4e		192.168.1.126	3	0
2	1	1733/1560	58	1m:8s		21m:17s	0	
c8:b5:ad:cb:cb:4e		AP-315	Portal (AC)	-		192.168.1.123	0	1
0	0	-	0	54s		1h:29m:19s	1	

Total APs: 3

(N): 11N Enabled. (AC): 11AC Enabled. (AD): 11AD Enabled. For Portals 'Uplink Age' equals uptime.

BLDG-A-ATV1#

Access Points (3)							
Name	IP Address	Mode	Spectrum	Clients	Type	Mesh Role	
BLDG-A-ATV1 ★	192.168.1.121	access	enable	4	303H(indoor)	Portal	
c8:b5:ad:cb:cb:4e	192.168.1.123	access	enable	0	315(indoor)	Portal	
c8:b5:ad:cb:ca:e2	192.168.1.126	access	enable	0	315(indoor)	Point	

3.4 Reconnecting the Wired Port

Now we will reconnect the Ethernet cable from IAP-315 (c8:b5:ad:cb:ca:e2). When we re-connect the Ethernet cable the default behaviour is that the IAP immediately reboots as soon as it senses that the physical interface is up. This is not the best option as the link could be up and the Ethernet network may not be operational.

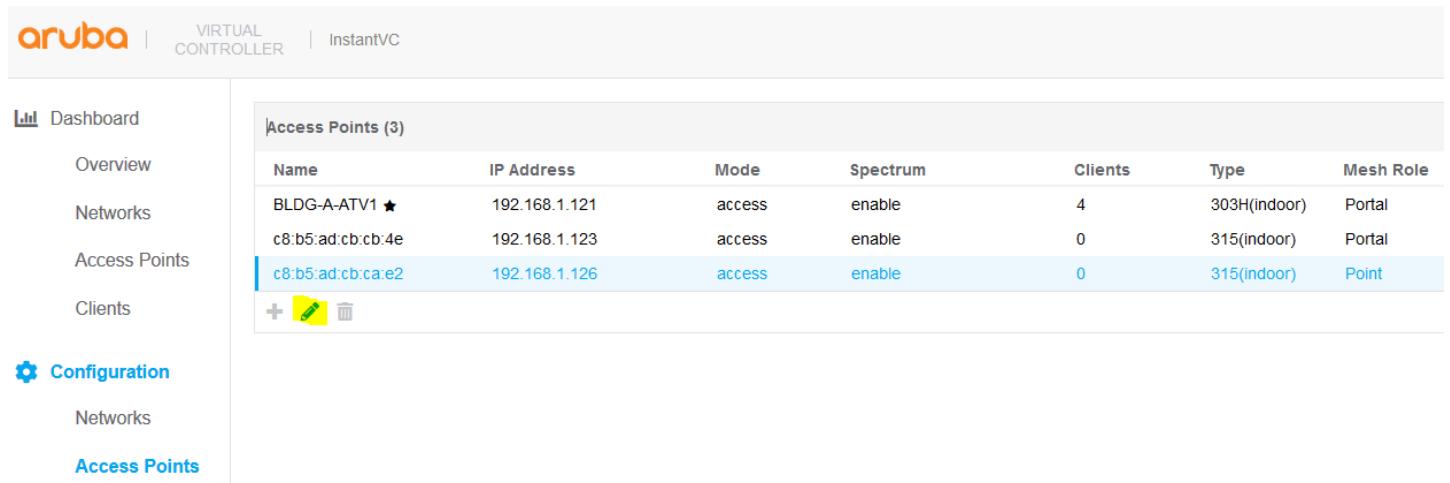
With Instant 8.4 we have “enhanced-mesh-role-detect” command that sends loop detection packets to check if the Ethernet 0 link is available. This is a CLI command only.

```
BLDG-A-ATV1#
BLDG-A-ATV1# conf t
We now support CLI commit model, please type "commit apply" for configuration to take effect.
BLDG-A-ATV1 (config) # enhanced-mesh-role-detect
BLDG-A-ATV1 (config) #
BLDG-A-ATV1# com app
committing configuration...
configuration committed.

BLDG-A-ATV1#
```

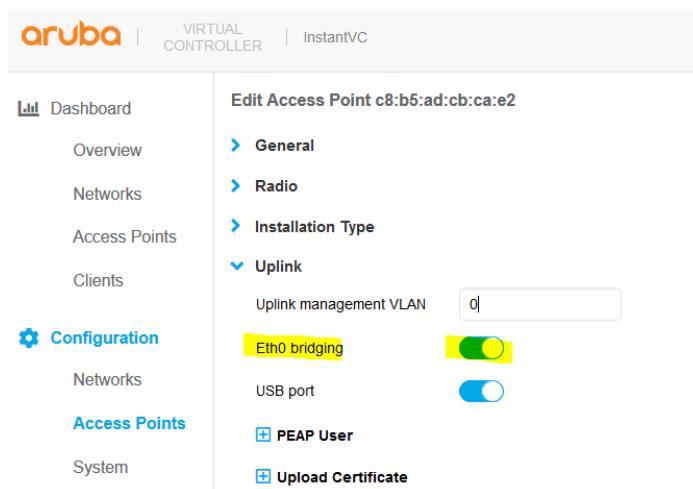
So now with this command when we connect the Eth cable to just bring up the interface, the IAP will not reboot immediately unless it sees that the Ethernet network is operational.

```
c8:b5:ad:cb:ca:e2# sh log sys 20


May 20 11:24:20  syslog: <393003> <WARN> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 dpimgr| dpimgr_brightcloud_init 312 BCA init done
May 20 12:06:42  cli[5728]: <341004> <WARN> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 cli| Detected eth link become up, send loop detect packet.
May 20 12:07:15  cli[5728]: <341004> <WARN> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 cli| Detected eth link become up, send loop detect packet.
May 20 12:08:16  cli[5728]: <341004> <WARN> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 cli| Detected eth link become up, send loop detect packet.
May 20 12:09:19  cli[5728]: <341004> <WARN> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 cli| Detected eth link become up, send loop detect packet.
May 20 12:10:20  cli[5728]: <341004> <WARN> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 cli| Detected eth link become up, send loop detect packet.
May 20 12:11:21  cli[5728]: <341004> <WARN> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 cli| Detected eth link become up, send loop detect packet.
May 20 12:12:24  cli[5728]: <341004> <WARN> |AP c8:b5:ad:cb:ca:e2@192.168.1.126 cli| Detected eth link become up, send loop detect packet.
```

```
c8:b5:ad:cb:ca:e2#
```

This really enhances the uptime and functionality of the mesh links.


3.5 Ethernet Bridging

This feature is used to use the Ethernet port of the Mesh Point IAP as a downlink, so you can attached a wired device either on the same VLAN as that of the IAP or on any other VLAN through VLAN trunking. You can do this by simply selecting the IAP as shown below

Access Points (3)							
	Name	IP Address	Mode	Spectrum	Clients	Type	Mesh Role
BLDG-A-ATV1 ★	192.168.1.121	access	enable	4	303H(indoor)	Portal	
c8:b5:ad:cb:cb:4e	192.168.1.123	access	enable	0	315(indoor)	Portal	
c8:b5:ad:cb:ca:e2	192.168.1.126	access	enable	0	315(indoor)	Point	

And editing the selected IAP and enabling Eth0 bridging. Obviously, this is meant for IAPs that have one Ethernet port that being Eth0.

Dashboard

Overview

Networks

Access Points

Clients

Configuration

Networks

Access Points

Edit Access Point c8:b5:ad:cb:ca:e2

General

Radio

Installation Type

Uplink

Uplink management VLAN 0

Eth0 bridging

USB port

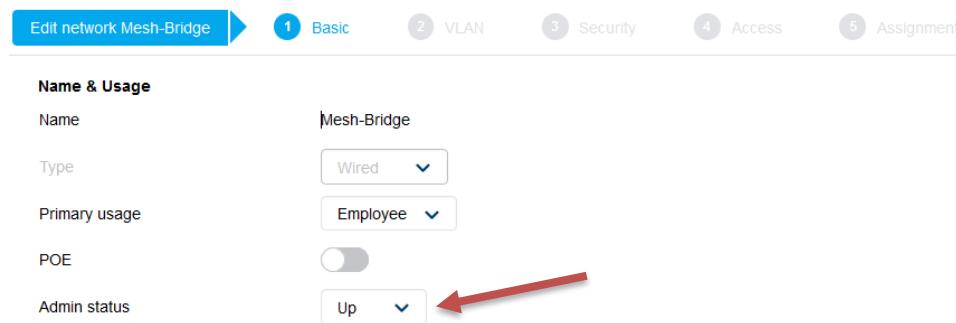
PEAP User

Upload Certificate

You should then reboot the IAP for this change to take effect. Note that if an IAP is set to Ethernet 0 bridging, it always acts as a mesh point. When an IAP is configured with Eth0 bridging and then rebooted, the E0 bridging will become AP environment setting.

I have shown this here when I have interrupted the boot sequence of the IAP and printing the env attributes.

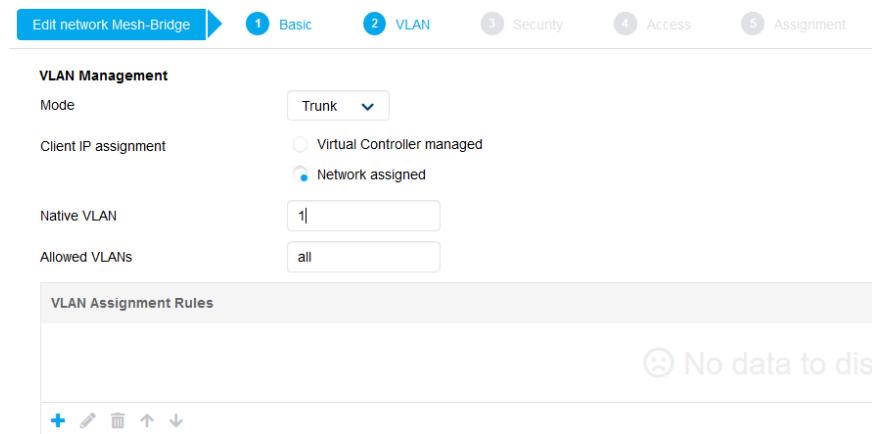
```
apboot> printenv
bootdelay=2
baudrate=9600
autoload=n
boardname=Glenfarclas
servername=aruba-master
bootcmd=boot ap
autostart=yes
```


```

bootfile=ipq806x.ari
mtdids=nand0=nand0
ethaddr=c8:b5:ad:cb:ca:e2
NEW_SBL2=1
uap_controller_less=1
os_partition=1
enet0_bridging=1
mesh_cluster_key=longstring
mesh_cluster_name= longstring
start_type=warm_start
stdin=serial
stdout=serial
stderr=serial
machid=1260

Environment size: 655/65532 bytes
apboot>

```

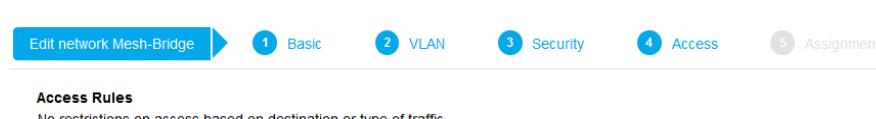

Next we need to configure a network profile for our mesh bridge and assign it to Eth0, this is so that we can have network connectivity across the mesh link.

Basic tab configuration:

- Name: Mesh-Bridge
- Type: Wired
- Primary usage: Employee
- POE: Off
- Admin status: Up

Note that the admin status should be set to Up.

VLAN tab configuration:

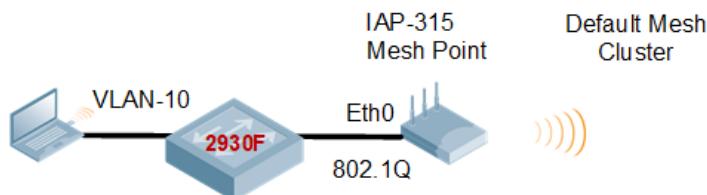

- Mode: Trunk
- Client IP assignment: Network assigned
- Native VLAN: 1
- Allowed VLANs: all

VLAN Assignment Rules: No data to display

Security tab configuration:

- Port type: Trusted

Access tab configuration:


Access Rules: No restrictions on access based on destination or type of traffic

Edit network Mesh-Bridge

1 Basic 2 VLAN 3 Security 4 Access 5 Assignment

0/0	Mesh-Bridge	▼
0/1	wired-SetMeUp	▼
0/2	Wired-VLAN20	▼
0/3	wired-SetMeUp	▼
0/4	wired-SetMeUp	▼

Once you have configured this profile and assigned it to 0/0 as shown above, you can then connect the LAN switch to this Eth0 interface of the Mesh point AP.

The MAC address of the laptop is F0:DE:F1:64:0A:82

Now you can check the bridging table with this command and should see the MAC address of the device that is connected to the Eth0 port.

```
c8:b5:ad:cb:ca:e2# show datapath bridge
Datapath Bridge Devices
-----
Flags: F - source-filter, T - trusted, Q - tagged, I - IP
      S - split-tunnel, B - bridge, M - mesh, P - PPPoE
      C - content-filter, O - corp-access, h - to HAP, f - to FAP
      h - dhcp-redirect b - blocked by STP, H - Hierarchy AP connected

Dev  Name          VLANs  PVID  ACLs          MTU  FramesRx  FramesTx  Flags
---  -----
3   bond0          4095   1    196/0        0    1500    188106  1925287  FTQB
15  br0            0     1    105/0        0    1300    94106   0        FIB
16  mesh0          4095   1    0/0          0    1500    2542492  898459   FTQBM
26  aruba002       1     1    158/0        0    1500    435001  1490087  B
27  aruba102       1     1    158/0        0    1500      32      10820   B

Datapath Bridge Table Entries
-----
Flags: P - Permanent, D - Deny, R - Route, M - Mobile, X - Xsec, A - Auth
AP Flags: X - Awaiting 1X reply, B - Block all non-1X traffic, F - Force bridge role

      MAC          VLAN  Assigned VLAN  Destination  Flags  AP Flags  Bridge Role ACL
      -----  -----  -----  -----  -----  -----  -----  -----
E8:50:8B:ED:39:18  1      1          dev16          0
20:4C:03:23:A7:C0  3333  3333        dev16          P      0
FC:3F:DB:44:5E:91  1      1          dev16          0
F0:D5:BF:4B:67:11  1      1          vlan 1        0
20:4C:03:23:A7:C0  1      1          dev16          0
C8:B5:AD:CB:CB:4E  1      1          dev16          0
B0:5A:DA:98:B5:70  10     10         dev16          0
B0:5A:DA:98:B5:70  1      1          dev16          0
B0:5A:DA:98:8E:B0  1      1          dev3           0
B8:41:A4:74:E5:46  1      1          dev16          0
C8:B5:AD:CB:CA:E2  3333  3333        local          P      0
F8:D0:27:34:E9:12  1      1          dev27          0
F0:DE:F1:64:0A:82  10     10         dev3           0
C8:B5:AD:CB:CB:4E  3333  3333        dev16          P      0
14:5F:94:81:56:26  1      1          dev16          0
A4:D1:D2:5F:32:52  1      1          dev26          0
```

```
C8:B5:AD:CB:CA:E2 1      1                         local          P          0
c8:b5:ad:cb:ca:e2#
```

And since we have made the port untrusted, we can see the wired clients with this command. The laptop as shown below is on VLAN 10. (10.10.10.100)

```
c8:b5:ad:cb:ca:e2# show clients wired

Wired Client List
-----
Name      IP Address      MAC Address      OS      Network      Access Point      Role
IPv6 Address      Speed (mbps)
-----
AriyaP  10.10.10.100  f0:de:f1:64:0a:82      bond0      c8:b5:ad:cb:ca:e2  Mesh-Bridge  --
-
Info timestamp      :23603
c8:b5:ad:cb:ca:e2#
```

And the other MAC addresses are the wireless devices on the mesh point

```
c8:b5:ad:cb:ca:e2# sh clients

Client List
-----
Name      IP Address      MAC Address      OS      ESSID      Access Point      Channel      Type
Role      IPv6 Address      Signal      Speed (mbps)
-----
--      --
192.168.1.15      f8:d0:27:34:e9:12      SG1      c8:b5:ad:cb:ca:e2  11      GN
EpsonPrinter  --      60(good)      1(poor)
192.168.1.127      a4:d1:d2:5f:32:52      iPad      SG1      c8:b5:ad:cb:ca:e2  149      AN
SG1      fe80::1016:5191:c8f2:7703      54(good)      58(good)
Number of Clients      :2
Info timestamp      :23778
c8:b5:ad:cb:ca:e2#
```

4 Instant Mesh Cluster

By default, Instant automatically generates mesh cluster ID and a password on 5GHz band. All the mesh portal automatically broadcasts a mesh services set identifier/cluster name so that the mesh points can identify it and then connect to it using AES encryption to authenticate to the mesh portals. This is not configurable and happens behind the scenes.

Now with the new Mesh enhancement we can

- Create multiple Mesh cluster
- Support mesh function in standalone mode AP

As per our previous configuration we are still running the default Mesh cluster.

```
BLDG-A-ATV1# sh ap mesh cluster topology

Mesh Cluster name: Default mesh group
-----
Name          AP Type  Mesh Role   Parent          IP Address  Path Cost  Node Cost
Link Cost    Hop Count Rate Tx/Rx RSSI  Last Update  Uplink Age  Children
----          -----  -----  -----  -----  -----  -----  -----  -----
BLDG-A-ATV1      AP-303H  Portal (AC)  -          192.168.1.121 0          0
0              -          0          30s          15h:13m:14s 0
c8:b5:ad:cb:ca:e2 AP-315  Point (AC)  c8:b5:ad:cb:cb:4e 192.168.1.126 3          0          2
1              1733/1733 52          2m:50s        19m:11s    0
c8:b5:ad:cb:cb:4e AP-315  Portal (AC)  -          192.168.1.123 0          1          0
0              -          0          3m:49s        3h:59m:6s   1

Total APs: 3
(N): 11N Enabled. (AC): 11AC Enabled. (AD): 11AD Enabled. For Portals 'Uplink Age' equals uptime.

BLDG-A-ATV1#
c8:b5:ad:cb:cb:4e # sh ap mesh link

Neighbor list
-----
MAC          Portal          Channel  Age  Hops  Cost  Relation          Flags
RSSI  Rate Tx/Rx  A-Req A-Resp A-Fail HT-Details          Cluster ID
---          -----  -----  -----  ---  -----  -----  -----
c8:b5:ad:3c:ae:31 24:f2:7f:d5:fa:d0 36E    0    1    5.00  C 1h:30m:0s          VLK    48
866/866      1      1      0          VHT-80MHzsgi-4ss b4afc01b0ce08dcc578432086842f21

Total count: 1, Children: 1
Relation: P = Parent; C = Child; N = Neighbor; B = Blacklisted-neighbor
Flags: R = Recovery-mode; S = Sub-threshold link; D = Reselection backoff; F = Auth-failure; H = High Throughput; V = Very High Throughput, L = Legacy allowed
K = Connected; U = Upgrading; G = Descendant-upgrading; Z = Config pending; Y = Assoc- resp/Auth pending
a = SAE Accepted; b = SAE Blacklisted-neighbour; e = SAE Enabled; u = portal-unreachable; o = opensystem
BLDG-A-ATV1#
```

Here you can see that the mesh cluster ID is **b4afc01b0ce08dcc578432086842f21**, you'll notice that this is being broadcasted as well.

4.1 Instant Cluster Manual Configuration

With Instant 8.4.0.0 you can now support multiple mesh clusters. We can do this by manually configuring Mesh cluster name and password. Mesh cluster function is a per-AP setting and must be configured manually. When an IAP boots up, it attempts to find a mesh cluster configuration so when IAP is already configured with a mesh cluster then it will use that otherwise it uses the default mesh cluster.

There are basically three commands

To configure the cluster password
`c8:b5:ad:cb:ca:e2# mesh-cluster-key <key>`

To configure the name in a mesh network:
`c8:b5:ad:cb:ca:e2# mesh-cluster-name <name>`

To disable mesh functionality in a network:
`c8:b5:ad:cb:ca:e2# mesh-disable`

So we login to our IAP-315 which is already a Mesh point and configure the following

```
c8:b5:ad:cb:ca:e2# mesh-cluster-key Aruba123456789
c8:b5:ad:cb:ca:e2# mesh-cluster-name MeshCluster-1
```

We also login to our IAP-315 which is a Mesh portal and configure the same (note the MAC addresses).

```
c8:b5:ad:cb:cb:4e# mesh-cluster-key Aruba123456789
c8:b5:ad:cb:cb:4e# mesh-cluster-name MeshCluster-1
```

Then we'll reload both of them. Once they get rebooted and are online we check the VC which is the AP-303H

aruba | VIRTUAL CONTROLLER | InstantVC

Access Points (3)							
Name	IP Address	Mode	Spectrum	Clients	Type	Mesh Role	
BLDG-A-ATV1 ★	192.168.1.121	access	enable	3	303H(indoor)	Portal	
c8:b5:ad:cb:cb:4e	192.168.1.119	access	enable	3	315(indoor)	Portal	
c8:b5:ad:cb:ca:e2	192.168.1.116	access	enable	0	315(indoor)	Point	
+	✎	✖					

Configuration

- Networks
- Access Points

Lets check the mesh topology from the VC. Here we see the two mesh clusters, one that was manually configured and the other the default cluster.

```
BLDG-A-ATV1# sh ap mesh cluster topology
```

Mesh Cluster name: **MeshCluster-1**

Name	AP Type	Mesh Role	Parent	IP Address	Path Cost	Node Cost	Link Cost	Hop Count	Rate Tx/Rx	RSSI	Last Update	Uplink Age	Children
c8:b5:ad:cb:ca:e2	AP-315	Point (AC)	c8:b5:ad:cb:cb:4e	192.168.1.116	3	2	1	1733/1560	49	6s	3h:47m:12s	0	0
c8:b5:ad:cb:cb:4e	AP-315	Portal (AC)	-	192.168.1.119	0	0	0	-	0	1m:2s	3h:57m:46s	1	1

Total APs: 2

(N): 11N Enabled. (AC): 11AC Enabled. (AD): 11AD Enabled. For Portals 'Uplink Age' equals uptime.

Mesh Cluster name: **Default mesh group**

Name	AP Type	Mesh Role	Parent	IP Address	Path Cost	Node Cost	Link Cost	Hop Count	Rate Tx/Rx	RSSI	Last Update	Uplink Age	Children
BLDG-A-ATV1	AP-303H	Portal (AC)	-	192.168.1.121	0	0	0	-	0	4m:36s	22h:17m:5s	0	0

Total APs: 1

(N): 11N Enabled. (AC): 11AC Enabled. (AD): 11AD Enabled. For Portals 'Uplink Age' equals uptime.

```
BLDG-A-ATV1#
```

The important thing here is that we now have good predictivity and control for choosing Mesh Points that need to connect to specific Mesh portals. You also have the ability to disable mesh cluster on per IAP basis.

4.2 Instant Cluster Configuration with Standalone mode

Here we have converted our previous IAP-315 (c8:b5:ad:cb:ca:e2) Mesh point to standalone mode. It still retained all the info regarding the mesh cluster-1 as before. But you should note that if the mesh cluster that was configured is not available the standalone IAP will not be able to connect to the default mesh cluster if the Instant cluster and you should design your mesh cluster with standalone IAPs accordingly.

```
<<<<      Welcome to the Access Point      >>>>
```

```
Power supply mode is POE-AF:, USB Modem is not present.
Completed SW FIPS KAT test
[ 109.789097] Starting Kernel HMAC SHA1 FIPS KAT ...
[ 109.845423] Completed Kernel HMAC SHA1 FIPS KAT
[ 110.527585] Kernel watchdog refresh ended on core 0.
[ 110.529397] Kernel watchdog refresh ended on core 1.
[ 111.789597] Starting Kernel HMAC SHA256 FIPS KAT ...
[ 112.045798] Completed Kernel HMAC SHA256 FIPS KAT
```

```

[ 113.797594] Starting Kernel HMAC SHA384 FIPS KAT ...
[ 113.958106] Completed Kernel HMAC SHA384 FIPS KAT
[ 115.797594] Starting Kernel HMAC SHA512 FIPS KAT ...
[ 115.859856] Completed Kernel HMAC SHA512 FIPS KAT
[ 130.456950] aruba_commit_radio 1542 d6680540
[ 130.460980] aruba_commit_radio 1542 d6780540
[ 131.047735] enet0 bridging is enabled
[ 136.154920] enet0 bridging is enabled
[ 145.269447] bond0 acl set to 196 0
[ 155.703030] enet0 bridging is enabled
[ 156.762636] VAP device aruba000 created osifp: (dcc07540) os_if: (da380000)
[ 156.836738] wmi_unified_set_psmode:set psmode=1
[ 156.888003] wmi_unified_set_psmode:set psmode=0
[ 156.948297] VAP device aruba001 created osifp: (ddec1540) os_if: (d8a48000)
[ 180.995563] ieee80211_connection_state_connecting_entry:668, enter.....,sm->candidate_aplist_index = 0
[ 181.095657] wlan_assoc_sm_start:890, enter.....
[ 181.150827] ieee80211_assoc_state_init_event:142, enter....., event 0
[ 181.231552] probereq timeout happen in state machine but we donot care it event =
4,186,ieee80211_assoc_state_join_event
[ 181.359169] ieee80211_assoc_state_join_event:197, goto AUTH
[ 181.425804] wlan_mlme_auth_request:344, enter >>>>>>
[ 181.493533] ieee80211_assoc_state_assoc_event:333, ASSOC sucess and transition to RUN
state
[ 182.097344] ip_time_handler: Got ip and packets on bond0 Started master election 26-0,
rand 20

[ 202.247266] i am master now
[ 202.268166] (03:08:05) !!! Init ---> Master
[ 202.318150] asap_send_elected_master: sent successfully
[ 220.726522] ADDRCONF(NETDEV_CHANGE): bond0: link becomes ready
[ 220.784317] bond0: 1000 Mbps Full Duplex
[ 221.843517] Setting Jumbo MRU 2000
[ 230.572227] enet0 bridging is enabled
[ 248.709965] bond0 acl set to 196 0
[ 250.730365] VAP device aruba002 created osifp: (dcc06540) os_if: (d52c0000)
[ 251.252452] VAP device aruba102 created osifp: (dca9f540) os_if: (d3d40000)

```

Checking the mode to ensure it is standalone.

```

c8:b5:ad:cb:ca:e2# sh swarm mode

Swarm Mode      :Standalone
Reason          :Manual provision
c8:b5:ad:cb:ca:e2#

```

Now lets check the mesh cluster status, as you can see the cluster configuration is still there.

```

c8:b5:ad:cb:ca:e2# sh ap mesh cluster config

Mesh cluster name :MeshCluster-1
Mesh cluster key  :Manual

c8:b5:ad:cb:ca:e2# sh ap mesh cluster status

Mesh cluster      :Enabled
Mesh cluster name :MeshCluster-1
Mesh role         :Mesh Point

```

```

c8:b5:ad:cb:ca:e2#
c8:b5:ad:cb:ca:e2# sh ap mesh cluster topology

Mesh Cluster name: MeshCluster-1
-----
Name          AP Type  Mesh Role   Parent      IP Address      Path Cost  Node Cost  Link Cost
Hop Count    Rate Tx/Rx RSSI   Last Update  Uplink Age   Children
-----  -----  -----  -----  -----  -----  -----  -----  -----  -----  -----  -----  -----
c8:b5:ad:cb:ca:e2  AP-315  Point (AC)  Not Found  192.168.1.115  3          0          2
1          1560/975  54      18s        36m:52s      0

Total APs: 1
(N): 11N Enabled. (AC): 11AC Enabled. (AD): 11AD Enabled. For Portals 'Uplink Age' equals uptime.

c8:b5:ad:cb:ca:e2#

```

Now lets check the mesh link status.

```

c8:b5:ad:cb:ca:e2# sh ap mesh link

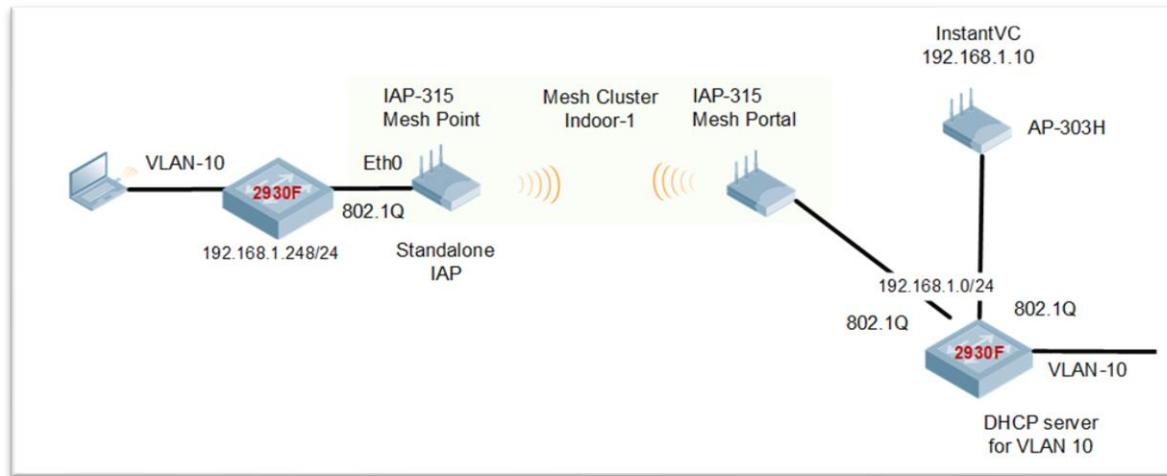
Neighbor list
-----
MAC          Portal  Channel  Age  Hops  Cost  Relation      Flags  RSSI  Rate
Tx/Rx  A-Req  A-Resp  A-Fail  HT-Details  Cluster ID
---  -----  -----  ---  -----  -----  -----  -----  -----  -----  -----
--  -----  -----  -----  -----  -----  -----  -----  -----  -----  -----
c8:b5:ad:3c:b4:f0  Yes      149E      0      0    3.00  P 35m:16s  VLK      53  702/1053
1          1          0  VHT-80MHzsgi-4ss  b4bd690840b87c3b9ac3d916cf6baa1

Total count: 1, Children: 0
Relation: P = Parent; C = Child; N = Neighbor; B = Blacklisted-neighbor
Flags: R = Recovery-mode; S = Sub-threshold link; D = Reselection backoff; F = Auth-failure; H = High Throughput; V = Very High Throughput, L = Legacy allowed
K = Connected; U = Upgrading; G = Descendant-upgrading; Z = Config pending; Y = Assoc- resp/Auth pending
a = SAE Accepted; b = SAE Blacklisted-neighbour; e = SAE Enabled; u = portal-unreachable; o = opensystem
c8:b5:ad:cb:ca:e2#

```

Here we check all mesh neighbors for this stadalone IAP.

```


c8:b5:ad:cb:ca:e2# sh ap mesh neighbours

Neighbor list
-----
MAC          Portal  Channel  Age  Hops  Cost  Relation      Flags  RSSI  Rate
Tx/Rx  A-Req  A-Resp  A-Fail  HT-Details  Cluster ID
---  -----  -----  ---  -----  -----  -----  -----  -----  -----
--  -----  -----  -----  -----  -----  -----  -----  -----  -----
c8:b5:ad:3c:b4:f0  Yes      149E      0      0    3.00  P 39m:10s  VLK      53
1560/1560  1          1          0  VHT-80MHzsgi-4ss  b4bd690840b87c3b9ac3d916cf6baa1

Total count: 1, Children: 0
Relation: P = Parent; C = Child; N = Neighbor; B = Blacklisted-neighbor
Flags: R = Recovery-mode; S = Sub-threshold link; D = Reselection backoff; F = Auth-failure; H = High Throughput; V = Very High Throughput, L = Legacy allowed
K = Connected; U = Upgrading; G = Descendant-upgrading; Z = Config pending; Y = Assoc- resp/Auth pending
a = SAE Accepted; b = SAE Blacklisted-neighbour; e = SAE Enabled; u = portal-unreachable; o = opensystem
c8:b5:ad:cb:ca:e2#

```

now we connect the Eth0 of the standalone IAP-315 to a LAN switch (2930F) and connect a laptop on VLAN 10 to the switch. Note that E0 bridging is enabled as before.

The laptop (with the MAC address of F0:DE:F1:64:0A:82) gets an IP address from VLAN 10 at the far side.

```
c8:b5:ad:cb:ca:e2# sh datapath bridge
Datapath Bridge Devices
-----
Flags: F - source-filter, T - trusted, Q - tagged, I - IP
      S - split-tunnel, B - bridge, M - mesh, P - PPPoE
      C - content-filter, O - corp-access, h - to HAP, f - to FAP
      h - dhcp-redirect b - blocked by STP, H - Hierarchy AP connected

  Dev  Name          VLANs  PVID  ACLs          MTU  FramesRx  FramesTx  Flags
  ---  ---          -----  ---  -----          ---  -----  -----  -----
  3    bond0          4095   1    196/0        0    1500    764    28095  FQB
  15   br0            0      1    105/0        0    1300    3759    0        FIB
  16   mesh0          4095   1    0/0          0    1500    30974   4559    FTQBM

Datapath Bridge Table Entries
-----
Flags: P - Permanent, D - Deny, R - Route, M - Mobile, X - Xsec, A - Auth
AP Flags: X - Awaiting 1X reply, B - Block all non-1X traffic, F - Force bridge role

  MAC      VLAN  Assigned VLAN  Destination  Flags  AP Flags  Bridge Role ACL
  ---  ---  -----  -----  -----  -----  -----  -----
  FC:3F:DB:44:5E:91  1      1          dev16          0
  20:4C:03:23:A7:C0  1      1          dev16          0
  C8:B5:AD:CB:CB:4E  1      1          dev16          0
  B0:5A:DA:98:B5:70  10     10         dev16          0
  B0:5A:DA:98:B5:70  1      1          dev16          0
  B0:5A:DA:98:8E:B0  1      1          dev3           0
  C8:B5:AD:CB:CA:E2  3333   3333       local          P           0
  F0:DE:F1:64:0A:82  10     10         dev3           0
  14:5F:94:81:56:26  1      1          dev16          0
  C8:B5:AD:CB:CA:E2  1      1          local          P           0
c8:b5:ad:cb:ca:e2#
```

Here we can check the wired clients on the standalone IAP-315. Note that 192.168.1.248 is the IP address of the LAN switch.

```
c8:b5:ad:cb:ca:e2# sh clients wired
Wired Client List
-----
```

Name	IP Address	MAC Address	OS	Network	Access Point	Role	IPv6 Address
Speed (mbps)	-----	-----	--	-----	-----	-----	-----
AriyaP	10.10.10.100	f0:de:f1:64:0a:82		bond0	c8:b5:ad:cb:ca:e2	Mesh-Bridge	--
	192.168.1.248	b0:5a:da:98:8e:b0		bond0	c8:b5:ad:cb:ca:e2	Mesh-Bridge	--
Info timestamp		:8500					
		c8:b5:ad:cb:ca:e2#					

When we start successfully pinging from the laptop (10.10.10.100) to the default gateway (10.10.10.1) which is across the mesh link, we should see the entries in the datapath sessino table on the standalone IAP, demonstrating the traffic is flowing through the mesh link.

```
c8:b5:ad:cb:ca:e2# sh datapath session
Datapath Session Table Entries
-----
Flags: F - fast age, S - src NAT, N - dest NAT
      D - deny, R - redirect, Y - no syn
      H - high prio, P - set prio, T - set ToS
      C - client, M - mirror, V - VOIP
      I - Deep inspect, U - Locally destined
      s - media signal, m - media mon, a - rtp analysis
      E - Media Deep Inspect, G - media signal
      A - Application Firewall Inspect
      L - ALG session
      O - Session is programmed through SDN/Openflow controller
      p - Session is marked as permanent
RAP Flags: 0 - Q0, 1 - Q1, 2 - Q2, r - redirect to master, t - time based
```

Source IP	Destination IP	Prot	SPort	Dport	Cntr	Prio	ToS	Age	Destination	TAge	Packets	Bytes	Flags
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
10.10.10.100	10.10.10.1	1	37	2048	0	0	0	0	dev3	e	0	0	FYCI
10.10.10.100	10.10.10.1	1	36	2048	0	0	0	0	dev3	13	0	0	FYCI
10.10.10.100	10.10.10.1	1	35	2048	0	0	0	0	dev3	18	0	0	FYCI
10.10.10.100	10.10.10.1	1	34	2048	0	0	0	0	dev3	1d	0	0	FYCI
192.168.1.130	10.10.10.100	17	53	60046	0	0	0	1	dev3	5b	0	0	FYIA
F0:DE:F1:64:0A:82			0806		0	0	0	0	dev3	80	2	1000	F
10.10.10.1	10.10.10.100	1	35	0	0	0	56	0	dev3	18	0	0	FI
10.10.10.1	10.10.10.100	1	34	0	0	0	56	0	dev3	1d	0	0	FI
10.10.10.1	10.10.10.100	1	37	0	0	0	56	0	dev3	e	0	0	FI
10.10.10.1	10.10.10.100	1	36	0	0	0	56	0	dev3	13	0	0	FI
10.10.10.100	192.168.1.130	17	60046	53	0	0	0	1	dev3	5b	0	0	FCIA

c8:b5:ad:cb:ca:e2#

Just a side note to show that the WiFi mesh automatically becomes highest priority uplink.

```
c8:b5:ad:cb:ca:e2# sh uplink status

Uplink preemption          :enable
Uplink preemption interval :600
Uplink enforce              :none
Ethernet uplink bond0      :DHCP

Uplink Table
-----
Type      State  Priority  In Use
-----  -----
Wifi-mesh  UP      0        Yes
Wifi-sta   INIT    7        No
3G/4G     INIT    8        No
Internet failover          :disable
Max allowed test packet loss :10
Secs between test packets  :30
VPN failover timeout (secs) :180
```

```

Internet check timeout (secs) :10
ICMP pkt sent :0
ICMP pkt lost :0
Continuous pkt lost :0
VPN down time :0
AP1X type:NONE
Certification type:NONE
Validate server:NONE
c8:b5:ad:cb:ca:e2#

```

Lasly this is view from the VC on the Instant Cluster. The "1" indicates that there is one child

```

BLDG-A-ATV1# sh ap mesh cluster topology

Mesh Cluster name: MeshCluster-1
-----
Name          AP Type  Mesh Role   Parent  IP Address      Path Cost  Node Cost  Link Cost
Hop Count    Rate Tx/Rx RSSI   Last Update Uplink Age   Children
----          -----  -----  -----  -----  -----  -----  -----  -----  -----  -----
c8:b5:ad:cb:cb:4e AP-315  Portal (AC) -      192.168.1.120 0          1          0          0
-          0      4m:19s      2h:36m:56s 1

Total APs: 1
(N): 11N Enabled. (AC): 11AC Enabled. (AD): 11AD Enabled. For Portals 'Uplink Age' equals uptime.

Mesh Cluster name: Default mesh group
-----
Name          AP Type  Mesh Role   Parent  IP Address      Path Cost  Node Cost  Link Cost  Hop
Count    Rate Tx/Rx RSSI   Last Update Uplink Age   Children
----          -----  -----  -----  -----  -----  -----  -----  -----  -----
-          -      -      -      -      -      -      -      -      -
BLDG-A-ATV1 AP-303H  Portal (AC) -      192.168.1.121 0          0          0          0
-          0      2m:56s      4h:32m:52s 0

Total APs: 1
(N): 11N Enabled. (AC): 11AC Enabled. (AD): 11AD Enabled. For Portals 'Uplink Age' equals uptime.

BLDG-A-ATV1#

```