

1 Table of Contents

Table of Contents

1	Table of Contents	1
1.1	Revision History	1
2	Instant Wired Protection Features	2
2.1	Things you need	2
3	Instant AP Configuration	3
3.1	Local DHCP Scope	3
3.2	Wired Port Profile	3
3.3	Loop-protect Configuration	5
3.4	IAP Down Link Loop Scenario	6
3.5	IAP Switch Port Loop Scenario	8
3.6	IAP WAN Loop Scenario	10
3.7	Storm Control	12

1.1 Revision History

DATE	VERSION	EDITOR	CHANGES
24 Jun 2019	0.1	Ariya Parsamanesh	Initial creation
02 Jul 2019	0.2	Ariya Parsamanesh	IAP WAN Loop

2 Instant Wired Protection Features

Aruba Instant APs (IAP) provide an effective way to connect to multiple LAN segments for branch offices/sites with APs that have multiple Ethernet ports like AP303H, AP205H, AP303

Instant 8.4.x introduced the loop protection feature that detects and avoids the formation of loops on the Ethernet ports of an Instant AP. The loop protect feature can be enabled on all Instant APs, particularly those that have multiple Ethernet ports.

The loop protection feature prevents the formation of loops when:

- An unmanaged switch is connected to one port of an Instant AP and a loop forms in the unmanaged switch.
- The WAN port (E0) and either of ports 1, 2 or 3, if it exists, in an AP are connected to the same switch.
- Multiple ports in an Instant AP are connected to an unmanaged switch

Along with Loop protect, we also have storm-control feature in which it will restrict broadcast packets per sec.

In this short guide we'll use loop protection in three common scenarios.

1. IAP Down Link Loop Scenario
2. IAP Switch Port Loop Scenario.
3. IAP WAN Loop Scenario

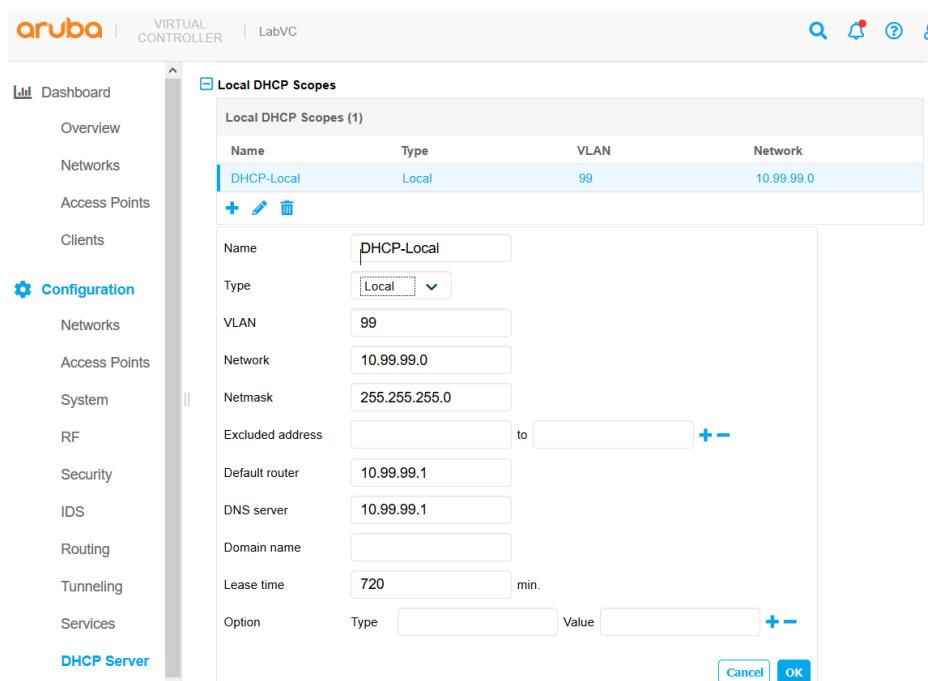
2.1 Things you need

- Aruba Instant version 8.4.0.0 or later
- 1x IAP with more than one Ethernet port like AP303H.
- A Layer three switch

3 Instant AP Configuration

When you enable loop protection feature, it transmits a proprietary loop detection packet on one Ethernet port of an IAP and check to see if it detects it on other ports. You can configure the interval at which this is sent.

Note that loop protect feature transmits this packet without a VLAN tag irrespective of mode configured on the port to be access or trunk. So if you have configured the port to be a VLAN trunk then the packet will be transmitted on the native VLAN only.


The configuration is through the CLI.

3.1 Local DHCP Scope

We'll start by configuring a Local DHCP scope on the IAP and call it VLAN 99, we then assign this to the E1 port of the AP-303H. This way when a client connects to E1 port it will get an IP address from this scope.

```
ip dhcp DHCP-Local
server-type Local
server-vlan 99
subnet 10.99.99.0
subnet-mask 255.255.255.0
default-router 10.99.99.1
dns-server 10.99.99.1
```

This is the WebUI view of it.

Local DHCP Scopes (1)			
Name	Type	VLAN	Network
DHCP-Local	Local	99	10.99.99.0

3.2 Wired Port Profile

Now we need to create a Wired Port Profile and then assign it to each of the physical Ethernet ports. Here we have configured one and called it E1-Port

```
wired-port-profile E1-Port
switchport-mode access
allowed-vlan all
native-vlan 99
no shutdown
```

```

access-rule-name E1-Port
speed auto
duplex auto
no poe
type employee
auth-server InternalServer
captive-portal disable
no dot1x
!
enet1-port-profile E1-Port

```

You need to assign it to the enet1 port profile. You can do all this through the WebUI as well. You start by creating a new network and choosing wired type as shown below.

The screenshots show the configuration of the E1-Port profile through the Aruba WebUI. The configuration is divided into five tabs: Basic, VLAN, Security, Access, and Assignment. The 'Basic' tab is currently active, showing the following settings for the E1-Port profile:

- Name & Usage**
 - Name:** E1-Port
 - Type:** Wired
 - Primary usage:** Employee
 - POE:** Off
 - Admin status:** Up

The 'VLAN' tab is the second tab from the left. It shows the following settings:

- VLAN Management**
 - Mode:** Access
 - Client IP assignment:** Virtual Controller managed
 - Client VLAN assignment:** Custom
 - DHCP-Local(vlan:99):** +

The 'Security' tab is the third tab from the left. It shows the following settings:

- Security**
 - Port type:** Untrusted
 - MAC authentication:** Off
 - 802.1X authentication:** Off

The 'Access' tab is the fourth tab from the left. It shows the following settings:

- Access Rules**
 - Access Rules:** Unrestricted
 - Download roles:** Off
 - No restrictions on access based on destination or type of traffic**

The 'Assignment' tab is the fifth tab from the left. It is currently inactive.

3.3 Loop-protect Configuration

Before we configure the loop-protect and storm-control features, let's check the status of the ports.

```
20:4c:03:23:a7:98#sh port status

Port Status
-----
Port  Type  Admin-State  Oper-State  STP-State  Dot3az  Loop-Protect  Storm-Control  Loop-  Loop-
-----  -----  -----  -----  -----  -----  -----  -----  -----  -----  -----  -----  -----
eth0  GE    up          up          Off        Disable  OFF        OFF        0        0
eth1  GE    up          down        Off        Disable  OFF        OFF        0        0
eth2  GE    up          down        Off        Disable  OFF        OFF        0        0
eth3  GE    up          down        Off        Disable  OFF        OFF        0        0
eth4  USB   up          down        Off        Disable  OFF        OFF        0        0

20:4c:03:23:a7:98#
```

Here are the CLI commands to enable loop-protect. You can also enable it from the WebUI.

```
20:4c:03:23:a7:98# conf t
We now support CLI commit model, please type "commit apply" for configuration to take
effect.
20:4c:03:23:a7:98 (config) # wired-port-profile E1-Port
20:4c:03:23:a7:98 (wired ap profile E1-Port) # loop-protect
20:4c:03:23:a7:98 (wired ap profile E1-Port) # loop-detection-interval 5
20:4c:03:23:a7:98 (wired ap profile E1-Port) #

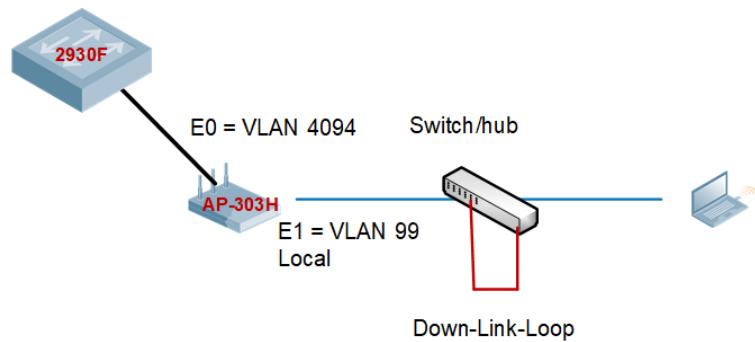
20:4c:03:23:a7:98# comm app
committing configuration...
configuration committed.
20:4c:03:23:a7:98#
20:4c:03:23:a7:98# sh port status

Port Status
-----
Port  Type  Admin-State  Oper-State  STP-State  Dot3az  Loop-Protect  Storm-Control  Loop-  Loop-
-----  -----  -----  -----  -----  -----  -----  -----  -----  -----  -----  -----  -----
eth0  GE    up          up          Off        Disable  OFF        OFF        0        0
0
eth1  GE    up          up          Off        Disable  ON         OFF        311
0
```

eth2	GE	up	down	Off	Disable	OFF	OFF	0
0								
eth3	GE	up	down	Off	Disable	OFF	OFF	0
0								
eth4	USB	up	down	Off	Disable	OFF	OFF	0
0								

20:4c:03:23:a7:98#

So once we enable it, the IAP will start sending the proprietary loop detection packet that I mentioned earlier for the port that the wired port profile is applied. In our case it's E1.


Here is the pcap of this packet.

Network traffic analysis showing 14 frames captured on interface 0. The frames are IEEE 802.11 wireless frames from an Aruba access point (AHe_23:a7:99) to a broadcast address. The frames are IEEE 802.11 wireless frames (Type: IEEE 802.11) with a length of 41 bytes. The frames are IEEE 802.11 wireless frames (Type: IEEE 802.11) with a length of 41 bytes.

No.	Time	Source	Destination	Protocol	Length	Info
1	0.000000	ArubaAHe_23:a7:99	Broadcast	IEEE80...	60	OUI 00:0b:86 (Aruba, a Hewlett Packard Enterprise Company), PID 0x0106
2	5.000003	ArubaAHe_23:a7:99	Broadcast	IEEE80...	60	OUI 00:0b:86 (Aruba, a Hewlett Packard Enterprise Company), PID 0x0106
3	9.999866	ArubaAHe_23:a7:99	Broadcast	IEEE80...	60	OUI 00:0b:86 (Aruba, a Hewlett Packard Enterprise Company), PID 0x0106
4	14.999893	ArubaAHe_23:a7:99	Broadcast	IEEE80...	60	OUI 00:0b:86 (Aruba, a Hewlett Packard Enterprise Company), PID 0x0106
5	19.999854	ArubaAHe_23:a7:99	Broadcast	IEEE80...	60	OUI 00:0b:86 (Aruba, a Hewlett Packard Enterprise Company), PID 0x0106
6	24.999807	ArubaAHe_23:a7:99	Broadcast	IEEE80...	60	OUI 00:0b:86 (Aruba, a Hewlett Packard Enterprise Company), PID 0x0106
7	25.820216	ArubaAHe_23:a7:99	LLDP_Multicast	LLDP	163	TTL = 120 SysName = 20:4c:03:23:a7:98 SysDesc = ArubaOS (MODEL: 303H), Version Aruba IAP
8	29.999699	ArubaAHe_23:a7:99	Broadcast	IEEE80...	60	OUI 00:0b:86 (Aruba, a Hewlett Packard Enterprise Company), PID 0x0106
9	34.999715	ArubaAHe_23:a7:99	Broadcast	IEEE80...	60	OUI 00:0b:86 (Aruba, a Hewlett Packard Enterprise Company), PID 0x0106
10	39.999674	ArubaAHe_23:a7:99	Broadcast	IEEE80...	60	OUI 00:0b:86 (Aruba, a Hewlett Packard Enterprise Company), PID 0x0106
11	44.999619	ArubaAHe_23:a7:99	Broadcast	IEEE80...	60	OUI 00:0b:86 (Aruba, a Hewlett Packard Enterprise Company), PID 0x0106
12	49.999569	ArubaAHe_23:a7:99	Broadcast	IEEE80...	60	OUI 00:0b:86 (Aruba, a Hewlett Packard Enterprise Company), PID 0x0106
13	54.999533	ArubaAHe_23:a7:99	Broadcast	IEEE80...	60	OUI 00:0b:86 (Aruba, a Hewlett Packard Enterprise Company), PID 0x0106
14	55.865725	ArubaAHe_23:a7:99	LLDP_Multicast	LLDP	163	TTL = 120 SysName = 20:4c:03:23:a7:98 SysDesc = ArubaOS (MODEL: 303H), Version Aruba IAP

3.4 IAP Down Link Loop Scenario

So now we are going to create a down link loop as shown below.

And we'll check the port status.

Port Status										

Port	Type	Admin-State	Oper-State	STP-State	Dot3az	Loop-Protect	Storm-Control	Loop-Detection-TX	Loop-Detection-RX	
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
eth0	GE	up	up	Off	Disable	OFF	OFF	0	0	
eth1	GE	up	up	Off	Disable	ON	OFF	391	0	
eth2	GE	up	down	Off	Disable	OFF	OFF	0	0	
eth3	GE	up	down	Off	Disable	OFF	OFF	0	0	
eth4	USB	up	down	Off	Disable	OFF	OFF	0	0	

```
20:4c:03:23:a7:98# [ 2179.453592] asap_loop_protect_detection_rcv: SJ: loop detected in downlink switch, port: 1
```

```
20:4c:03:23:a7:98# sh port status
```

Port Status

Port	Type	Admin-State	Oper-State	STP-State	Dot3az	Loop-Protect	Storm-Control	Loop-Detection-TX	Loop-Detection-RX
eth0	GE	up	up	Off	Disable	OFF	OFF	0	0
eth1	GE	up	down	Off	Disable	ON DL-LOOP	OFF	392	1
eth2	GE	up	down	Off	Disable	OFF	OFF	0	0
eth3	GE	up	down	Off	Disable	OFF	OFF	0	0
eth4	USB	up	down	Off	Disable	OFF	OFF	0	0

```
20:4c:03:23:a7:98#
```

Here we'll look at the logs as well.

```
20:4c:03:23:a7:98# sh log loop-protect
cparser_cmd_wired_port_profile_loop_protect 2840: start with[2019-04-27 01:00:33.879] <CONFIG>loop protect enable 1
cparser_cmd_wired_port_profile_loop_detection_interval_interval 2873: start with[2019-04-27 01:00:33.892] <CONFIG>loop protect
interval 5
configure_enet_profile 3743: start with[2019-04-27 01:00:41.528] <CONFIG>loop protect enable 1 interval 5 ifname 1 eth1
configure_enet_profile 3778: start with[2019-04-27 01:00:41.540] <CONFIG>Disable storm control check and recovery timer
configure_enet_profile 3807: start with[2019-04-27 01:00:41.552] <CONFIG>Disable recovery timer of loop protect
configure_enet_profile 3820: start with[2019-04-27 01:00:41.564] <CONFIG>Disable recovery timer of storm control
configure_enet_profile 3743: start with[2019-04-27 01:00:57.715] <CONFIG>loop protect enable 0 interval 2 ifname 2 eth2
configure_enet_profile 3778: start with[2019-04-27 01:00:57.730] <CONFIG>Disable storm control check and recovery timer
configure_enet_profile 3807: start with[2019-04-27 01:00:57.744] <CONFIG>Disable recovery timer of loop protect
configure_enet_profile 3820: start with[2019-04-27 01:00:57.756] <CONFIG>Disable recovery timer of storm control
configure_enet_profile 3743: start with[2019-04-27 01:01:20.862] <CONFIG>loop protect enable 0 interval 2 ifname 3 eth3
configure_enet_profile 3778: start with[2019-04-27 01:01:20.874] <CONFIG>Disable storm control check and recovery timer
configure_enet_profile 3807: start with[2019-04-27 01:01:20.886] <CONFIG>Disable recovery timer of loop protect
configure_enet_profile 3820: start with[2019-04-27 01:01:20.898] <CONFIG>Disable recovery timer of storm control

cli_get_storm_control_state 256: start with[2019-06-26 22:37:55.741] <LOOP-STATUS> no wired profile bind enet0
cli_get_storm_control_state 256: start with[2019-06-26 22:37:55.752] <LOOP-STATUS> no wired profile bind enet4
cli_get_storm_control_state 256: start with[2019-06-26 22:38:45.598] <LOOP-STATUS> no wired profile bind enet0
cli_get_storm_control_state 256: start with[2019-06-26 22:38:45.608] <LOOP-STATUS> no wired profile bind enet4
cli_get_storm_control_state 256: start with[2019-06-26 22:39:04.221] <LOOP-STATUS> no wired profile bind enet0
cli_get_storm_control_state 256: start with[2019-06-26 22:39:04.231] <LOOP-STATUS> no wired profile bind enet4
cli_get_storm_control_state 256: start with[2019-06-26 22:40:19.436] <LOOP-STATUS> no wired profile bind enet0
cli_get_storm_control_state 256: start with[2019-06-26 22:40:19.446] <LOOP-STATUS> no wired profile bind enet4
cli_get_storm_control_state 256: start with[2019-06-26 22:41:38.612] <LOOP-STATUS> no wired profile bind enet0
cli_get_storm_control_state 256: start with[2019-06-26 22:41:38.622] <LOOP-STATUS> no wired profile bind enet4

cli_loop_detect_event_handler 549: start with[2019-06-27 09:40:59.320] <LOOP-PROTECT> port err event on enet 1, shutdown the
port eth1
cli_get_storm_control_state 256: start with[2019-06-27 09:41:05.027] <LOOP-STATUS> no wired profile bind enet0
cli_get_storm_control_state 256: start with[2019-06-27 09:41:05.036] <LOOP-STATUS> no wired profile bind enet4
cli_get_storm_control_state 256: start with[2019-06-27 09:41:13.363] <LOOP-STATUS> no wired profile bind enet0
cli_get_storm_control_state 256: start with[2019-06-27 09:41:13.372] <LOOP-STATUS> no wired profile bind enet4
cli_get_storm_control_state 256: start with[2019-06-27 09:45:42.568] <LOOP-STATUS> no wired profile bind enet0
cli_get_storm_control_state 256: start with[2019-06-27 09:45:42.578] <LOOP-STATUS> no wired profile bind enet4

20:4c:03:23:a7:98#
```

You'll note that the port is in DN-Loop status and the port is down. This is because we have not enable auto-recovery which we'll now enable.

```
20:4c:03:23:a7:98 (config) # wired-port-profile E1-Port
20:4c:03:23:a7:98 (wired ap profile E1-Port) # auto-recovery
20:4c:03:23:a7:98 (wired ap profile E1-Port) # auto-recovery-interval ?
<interval>      Time to recover port in seconds (range is 30-43200 and default is 300)

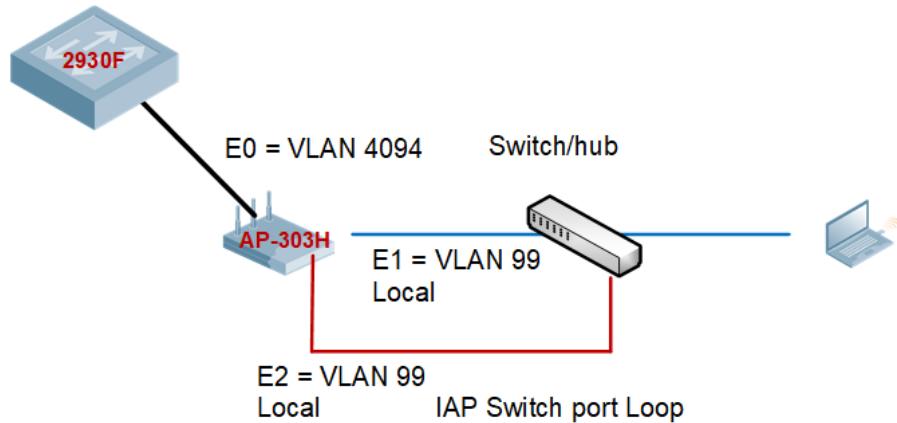
20:4c:03:23:a7:98 (wired ap profile E1-Port) # auto-recovery-interval 120
20:4c:03:23:a7:98 (wired ap profile E1-Port) #
20:4c:03:23:a7:98# com app
committing configuration...
configuration committed.
20:4c:03:23:a7:98#
```

So now that auto-recovery is set to 2 min, the port should be enabled again.

```

20:4c:03:23:a7:98# sh log loop-protect
cli_get_storm_control_state 256: start with[2019-06-27 10:00:19.826] <LOOP-STATUS> no wired profile bind enet0
cli_get_storm_control_state 256: start with[2019-06-27 10:00:19.836] <LOOP-STATUS> no wired profile bind enet4
cparser_cmd_wired_port_profile_auto_recovery 2962: start with[2019-06-27 10:01:33.529] <CONFIG>auto recovery
enable
cparser_cmd_wired_port_profile_auto_recovery_interval 2995: start with[2019-06-27 10:01:33.762]
<CONFIG>auto recovery interval 120

cli_clear_port_err 282: start with[2019-06-27 10:01:34.220] <LOOP-PROTECT> reset port error of enet1
configure_enet_profile 3743: start with[2019-06-27 10:01:34.233] <CONFIG>loop protect enable 1 interval 5 ifname
1 eth1
configure_enet_profile 3778: start with[2019-06-27 10:01:34.245] <CONFIG>Disable storm control check and
recovery timer
configure_enet_profile 3800: start with[2019-06-27 10:01:34.257] <CONFIG>Enable interval 120 recovery timer of
loop protect
configure_enet_profile 3813: start with[2019-06-27 10:01:34.269] <CONFIG>Enable interval 120 recovery timer of
storm control
cli_get_storm_control_state 256: start with[2019-06-27 10:02:33.856] <LOOP-STATUS> no wired profile bind enet0
cli_get_storm_control_state 256: start with[2019-06-27 10:02:33.866] <LOOP-STATUS> no wired profile bind enet4
cli_loop_protect_recovery 407: start with[2019-06-27 10:03:36.405] <TIMER> loop protect recovery timer expires
enet1 port eth1, port_err 0
cli_storm_control_recovery 379: start with[2019-06-27 10:03:36.417] <TIMER> storm control recovery timer expires
enet1 port eth1, port_err 0


20:4c:03:23:a7:98#
20:4c:03:23:a7:98#
20:4c:03:23:a7:98# sh port status

Port Status
-----
Port  Type  Admin-State  Oper-State  STP-State  Dot3az  Loop-Protect  Storm-Control  Loop-Detection-TX  Loop-
Detection-RX
-----  -----  -----  -----  -----  -----  -----  -----  -----  -----
eth0  GE    up        up        Off      Disable  OFF      OFF      0          0
eth1  GE    up        up        Off      Disable  ON       OFF      486       1
eth2  GE    up        down     Off      Disable  OFF      OFF      0          0
eth3  GE    up        down     Off      Disable  OFF      OFF      0          0
eth4  USB   up        down     Off      Disable  OFF      OFF      0          0
20:4c:03:23:a7:98#

```

3.5 IAP Switch Port Loop Scenario

Here we have the scenario that the switch port of the IAP are physically looped.

First we should enable loop protect on E2 port

[Dashboard](#)[New Network](#)[1 Basic](#)[2 VLAN](#)[3 Security](#)[4 Access](#)[5 Assignment](#)

Overview

Networks

Access Points

Clients

Configuration**Networks**

Access Points

System

RF

Security

IDS

Routing

Tunneling

Services

DHCP Server

Maintenance**Support****Name & Usage**Name Type Primary usage POE Admin status Speed/Duplex Content filtering Uplink Spanning tree Inactivity timeout 802.3az Loop Protect Enable Loop Detection Interval Storm Control Broadcast Storm Control Threshold Auto Recovery Auto Recovery Interval [New Network](#)[1 Basic](#)[2 VLAN](#)[3 Security](#)[4 Access](#)[5 Assignment](#)**VLAN Management**Mode Client IP assignment Virtual Controller managed
 Network assignedClient VLAN assignment Default
 Custom Allowed VLANs [New Network](#)[1 Basic](#)[2 VLAN](#)[3 Security](#)[4 Access](#)[5 Assignment](#)**Security**Port type MAC authentication 802.1X authentication [New Network](#)[1 Basic](#)[2 VLAN](#)[3 Security](#)[4 Access](#)[5 Assignment](#)**Access Rules**Access Rules Download roles

No restrictions on access based on destination or type of traffic

We should check the port status and see that loop-protect is on for E2.

```
20:4c:03:23:a7:98# sh port status

Port Status
-----
Port  Type Admin-State Oper-State STP-State Dot3az  Loop-Protect  Storm-Control  Loop-Detection-TX  Loop-
Detection-RX
-----  -----  -----  -----  -----  -----  -----  -----  -----  -----
eth0  GE   up      up      Off     Disable  OFF      OFF      0          0
eth1  GE   up      up      Off     Disable  ON      OFF      979       2
eth2  GE   up      up      Off     Disable  ON      OFF      3          0
eth3  GE   up      down    Off     Disable  OFF      OFF      0          0
eth4  USB  up      down    Off     Disable  OFF      OFF      0          0
20:4c:03:23:a7:98#
```

And now we will connect the loop as shown in the previous diagram to E2 port.

```
20:4c:03:23:a7:98# [ 6794.458090] asap_loop_protect_detection_rcv: SJ: loop detected with other interface, port:
2 looped with port: 1

20:4c:03:23:a7:98# sh port status

Port Status
-----
Port  Type Admin-State Oper-State STP-State Dot3az  Loop-Protect  Storm-Control  Loop-Detection-TX  Loop-
Detection-RX
-----  -----  -----  -----  -----  -----  -----  -----  -----  -----
eth0  GE   up      up      Off     Disable  OFF      OFF      0          0
eth1  GE   up      up      Off     Disable  ON      OFF      1094      2
eth2  GE   up      down    Off     Disable  ON WITH_SJ_LOOP OFF      3          1
eth3  GE   up      down    Off     Disable  OFF      OFF      0          0
eth4  USB  up      down    Off     Disable  OFF      OFF      0          0
20:4c:03:23:a7:98#
```

So here we see the status of WITH_SJ_LOOP, this shows a secure jack loop. If loop-protect packet is received on another Ethernet port of IAP, a loop between the Ethernet ports of the Instant AP is detected and the Ethernet port of the Instant AP port with lower priority is shut down. The Ethernet port with smaller port ID has high priority.

3.6 IAP WAN Loop Scenario

Here we have the scenario that the E0 and E1 ports of the IAP are physically looped through a head end switch.

We should check the port status and see that loop-protect is on for E1. And both E0 and E1 are up.

```
20:4c:03:23:a7:98# sh port status

Port Status
-----
Port  Type Admin-State Oper-State STP-State Dot3az  Loop-Protect  Storm-Control  Loop-Detection-TX  Loop-
Detection-RX
-----  -----  -----  -----  -----  -----  -----  -----  -----  -----
eth0  GE   up      up      Off     Disable  OFF      OFF      0      1
eth1  GE   up      up      Off     Disable  ON      OFF      1      0
eth2  GE   up      down    Off     Disable  ON      OFF      0      0
eth3  GE   up      down    Off     Disable  OFF     OFF      0      0
eth4  USB  up      down    Off     Disable  OFF     OFF      0      0
20:4c:03:23:a7:98#
20:4c:03:23:a7:98#
```

And now we will connect the loop as shown in the previous diagram to E1 port.

```
20:4c:03:23:a7:98#
20:4c:03:23:a7:98# sh port status

Port Status
-----
Port  Type Admin-State Oper-State STP-State Dot3az  Loop-Protect  Storm-Control  Loop-Detection-TX
Loop-Detection-RX
-----  -----  -----  -----  -----  -----  -----  -----  -----
eth0  GE   up      up      Off     Disable  OFF      OFF      0      1
eth1  GE   up      down    Off     Disable  ON WITH-WAN-LOOP OFF      1      0
eth2  GE   up      down    Off     Disable  ON      OFF      0      0
eth3  GE   up      down    Off     Disable  OFF     OFF      0      0
eth4  USB  up      down    Off     Disable  OFF     OFF      0      0
20:4c:03:23:a7:98#
```

So here we see the status of WITH_WAN_LOOP, this shows that a WAN loop is detected. As before if loop-protect packet is received on a different Ethernet port of IAP, the port with lower priority is shut down. The Ethernet port with smaller port ID has high priority, so in this case E1 is shutdown.

Now you can rely on auto-recovery or you can manually clear the loop-protect affected port by using this command.

```
20:4c:03:23:a7:98#
20:4c:03:23:a7:98# clear port enet1
20:4c:03:23:a7:98# sh port status

Port Status
-----
Port  Type Admin-State Oper-State STP-State Dot3az  Loop-Protect  Storm-Control  Loop-Detection-TX  Loop-
Detection-RX
-----  -----  -----  -----  -----  -----  -----  -----  -----
eth0  GE   up      up      Off     Disable  OFF      OFF      0      10
eth1  GE   up      up      Off     Disable  ON      OFF      10     0
eth2  GE   up      down    Off     Disable  ON      OFF      0      0
eth3  GE   up      down    Off     Disable  OFF     OFF      0      0
eth4  USB  up      down    Off     Disable  OFF     OFF      0      0
20:4c:03:23:a7:98#
```

3.7 Storm Control

Lastly it is always a good practise to also enable Storm control feature. During broadcast-storm control, an Instant AP counts the broadcast packets received on each of its Ethernet port and determines the packet rate in an interval. If the broadcast packet rate on one Ethernet port exceeds the configured threshold (default value is 2000 packets per second), the Ethernet port is shut down.

To configure broadcast storm control:

```
20:4c:03:23:a7:98(config)# wired-port-profile E1-Port
20:4c:03:23:a7:98 (wired ap profile E1-Port)# storm-control-broadcast
20:4c:03:23:a7:98 (wired ap profile E1-Port # storm-control-threshold 110
```

Aruba | VIRTUAL CONTROLLER | LabVC

Dashboard | Overview | Networks | Access Points | Clients | Configuration | Networks | Access Points | System | RF | Security | IDS | Routing | Tunneling | Services | DHCP Server | Maintenance | Support

edit E1-Port | 1 Basic | 2 VLAN | 3 Security | 4 Access | 5 Assignment

Name & Usage

Name: E1-Port
Type: Wired
Primary usage: Employee
POE: Off
Admin status: Up
Speed/Duplex: Auto/Auto
Content filtering: Off
Uplink: Off
Spanning tree: Off
Inactivity timeout: 1000 sec.
802.3az: Off
Loop Protect Enable: On
Loop Detection Interval: 5
Storm Control Broadcast: On
Storm Control Threshold: 2000
Auto Recovery: On
Auto Recovery Interval: 120

And finally here is the port status.

```
20:4c:03:23:a7:98# sh port status

Port Status
-----
Port  Type Admin-State Oper-State STP-State Dot3az  Loop-Protect  Storm-Control  Loop-Detection-TX  Loop-
Detection-RX
-----
eth0  GE   up      up      Off     Disable OFF      OFF      0          17
eth1  GE   up      down    Off     Disable ON      ON      17      0
eth2  GE   up      down    Off     Disable ON      OFF      0          0
eth3  GE   up      down    Off     Disable OFF      OFF      0          0
eth4  USB  up      down    Off     Disable OFF      OFF      0          0
20:4c:03:23:a7:98#
```